
Package index
-
wrap.correlation() - Prepare Data on Correlation Manifold
-
wrap.euclidean() - Prepare Data on Euclidean Space
-
wrap.grassmann() - Prepare Data on Grassmann Manifold
-
wrap.landmark() - Wrap Landmark Data on Shape Space
-
wrap.multinomial() - Prepare Data on Multinomial Manifold
-
wrap.rotation() - Prepare Data on Rotation Group
-
wrap.spd() - Prepare Data on Symmetric Positive-Definite (SPD) Manifold
-
wrap.spdk() - Prepare Data on SPD Manifold of Fixed-Rank
-
wrap.sphere() - Prepare Data on Sphere
-
wrap.stiefel() - Prepare Data on (Compact) Stiefel Manifold
-
riem.interp() - Geodesic Interpolation
-
riem.interps() - Geodesic Interpolation of Multiple Points
-
riem.pdist() - Compute Pairwise Distances for Data
-
riem.pdist2() - Compute Pairwise Distances for Two Sets of Data
-
riem.wasserstein() - Wasserstein Distance between Empirical Measures
-
predict(<m2skreg>) - Prediction for Manifold-to-Scalar Kernel Regression
-
riem.fanova()riem.fanovaP() - Fréchet Analysis of Variance
-
riem.m2skreg() - Manifold-to-Scalar Kernel Regression
-
riem.m2skregCV() - Manifold-to-Scalar Kernel Regression with K-Fold Cross Validation
-
riem.mean() - Fréchet Mean and Variation
-
riem.median() - Fréchet Median and Variation
-
riem.test2bg14() - Two-Sample Test modified from Biswas and Ghosh (2014)
-
riem.test2wass() - Two-Sample Test with Wasserstein Metric
-
riem.clrq() - Competitive Learning Riemannian Quantization
-
riem.hclust() - Hierarchical Agglomerative Clustering
-
riem.kmeans() - K-Means Clustering
-
riem.kmeans18B() - K-Means Clustering with Lightweight Coreset
-
riem.kmeanspp() - K-Means++ Clustering
-
riem.kmedoids() - K-Medoids Clustering
-
riem.nmshift() - Nonlinear Mean Shift
-
riem.sc05Z() - Spectral Clustering by Zelnik-Manor and Perona (2005)
-
riem.scNJW() - Spectral Clustering by Ng, Jordan, and Weiss (2002)
-
riem.scSM() - Spectral Clustering by Shi and Malik (2000)
-
riem.scUL() - Spectral Clustering with Unnormalized Laplacian
-
riem.isomap() - Isometric Feature Mapping
-
riem.kpca() - Kernel Principal Component Analysis
-
riem.mds() - Multidimensional Scaling
-
riem.pga() - Principal Geodesic Analysis
-
riem.phate() - PHATE
-
riem.sammon() - Sammon Mapping
-
riem.tsne() - t-distributed Stochastic Neighbor Embedding
-
riem.distlp() - Distance between Two Curves on Manifolds
-
riem.dtw() - Dynamic Time Warping Distance
-
riem.coreset18B() - Build Lightweight Coreset
-
riem.knn() - Find K-Nearest Neighbors
-
riem.rmml() - Riemannian Manifold Metric Learning
-
riem.seb() - Find the Smallest Enclosing Ball
-
moSL()loglkd(<moSL>)label(<moSL>)density(<moSL>) - Finite Mixture of Spherical Laplace Distributions
-
moSN()loglkd(<moSN>)label(<moSN>)density(<moSN>) - Finite Mixture of Spherical Normal Distributions
-
sphere.geo2xyz()sphere.xyz2geo() - Convert between Cartesian Coordinates and Geographic Coordinates
-
sphere.runif() - Generate Uniform Samples on Sphere
-
sphere.utest() - Test of Uniformity on Sphere
-
stiefel.optSA() - Simulated Annealing on Stiefel Manifold
-
stiefel.runif() - Generate Uniform Samples on Stiefel Manifold
-
stiefel.utest() - Test of Uniformity on Stiefel Manifold
-
grassmann.optmacg() - Estimation of Distribution Algorithm with MACG Distribution
-
grassmann.runif() - Generate Uniform Samples on Grassmann Manifold
-
grassmann.utest() - Test of Uniformity on Grassmann Manifold
-
spd.geometry() - Supported Geometries on SPD Manifold
-
spd.pdist() - Pairwise Distance on SPD Manifold
-
spd.wassbary() - Wasserstein Barycenter of SPD Matrices
-
dmacg()rmacg()mle.macg() - Matrix Angular Central Gaussian Distribution
-
dsplaplace()rsplaplace()mle.splaplace() - Spherical Laplace Distribution
-
dspnorm()rspnorm()mle.spnorm() - Spherical Normal Distribution