Free-Support Median by IRLS
rmedIRLS.Rd
For a collection of empirical measures \(\lbrace \mu_k\rbrace_{k=1}^K\), the free-support Wasserstein median, a minimizer to the following functional $$ \mathcal{F}(\nu) = \sum_{k=1}^K w_k \mathcal{W}_2 (\nu, \mu_k ), $$ is computed using the generic method of iteratively-reweighted least squares (IRLS) method according to You et al. (2025) .
Arguments
- atoms
a length-\(K\) list where each element is an \((N_k \times P)\) matrix of atoms.
- marginals
marginal distributions for empirical measures; if
NULL
(default), uniform weights are set for all measures. Otherwise, it should be a length-\(K\) list where each element is a length-\(N_i\) vector of nonnegative weights that sum to 1.- weights
weights for each individual measure; if
NULL
(default), each measure is considered equally. Otherwise, it should be a length-\(K\) vector.- num_support
the number of support points \(M\) for the barycenter (default: 100).
- ...
extra parameters including
- abstol
stopping criterion for iterations (default: 1e-6).
- maxiter
maximum number of iterations (default: 10).
Value
a list with three elements:
- support
an \((M \times P)\) matrix of the Wasserstein median's support points.
- weight
a length-\(M\) vector of median's weights with all entries being \(1/M\).
- history
a vector of cost values at each iteration.
References
You K, Shung D, Giuffrè M (2025). “On the Wasserstein Median of Probability Measures.” Journal of Computational and Graphical Statistics, 34(1), 253-266. ISSN 1061-8600, 1537-2715.
Examples
if (FALSE) { # \dontrun{
#-------------------------------------------------------------------
# Free-Support Wasserstein Median of Multiple Gaussians
#
# * class 1 : samples from N((0,0), Id)
# * class 2 : samples from N((20,0), Id)
#
# We draw 8 empirical measures of size 50 from class 1, and
# 2 from class 2. All measures have uniform weights.
#-------------------------------------------------------------------
## GENERATE DATA
# 8 empirical measures from class 1
input_measures = vector("list", length=10L)
for (i in 1:8){
input_measures[[i]] = matrix(rnorm(50*2), ncol=2)
}
for (j in 9:10){
base_draw = matrix(rnorm(50*2), ncol=2)
base_draw[,1] = base_draw[,1] + 20
input_measures[[j]] = base_draw
}
## COMPUTE
# compute the Wasserstein median
run_median = rmedIRLS(input_measures, num_support = 50)
# compute the Wasserstein barycenter
run_bary = rbaryGD(input_measures, num_support = 50)
## VISUALIZE
opar <- par(no.readonly=TRUE)
# draw the base points of two classes
base_1 = matrix(rnorm(80*2), ncol=2)
base_2 = matrix(rnorm(20*2), ncol=2)
base_2[,1] = base_2[,1] + 20
base_mat = rbind(base_1, base_2)
plot(base_mat, col="gray80", pch=19)
# auxiliary information
title("estimated barycenter and median")
abline(v=0); abline(h=0)
# draw the barycenter and the median
points(run_bary$support, col="red", pch=19)
points(run_median$support, col="blue", pch=19)
par(opar)
} # }