This function samples points along the contour of an ellipse represented by mean and variance parameters for a 2-dimensional Gaussian distribution to help ease manipulating visualization of the specified distribution. For example, you can directly use a basic plot() function directly for drawing.

Usage

gaussvis2d(mean, var, n = 500)

Arguments

mean

a length-$$2$$ vector for mean parameter.

var

a $$(2\times 2)$$ matrix for covariance parameter.

n

the number of points to be drawn (default: 500).

Value

an $$(n\times 2)$$ matrix.

Examples

# \donttest{
#----------------------------------------------------------------------
#                        Three Gaussians in R^2
#----------------------------------------------------------------------
# MEAN PARAMETERS
loc1 = c(-3,0)
loc2 = c(0,5)
loc3 = c(3,0)

# COVARIANCE PARAMETERS
var1 = cbind(c(4,-2),c(-2,4))
var2 = diag(c(9,1))
var3 = cbind(c(4,2),c(2,4))

# GENERATE POINTS
visA = gaussvis2d(loc1, var1)
visB = gaussvis2d(loc2, var2)
visC = gaussvis2d(loc3, var3)

# VISUALIZE