Conventional LTSA method relies on PCA for approximating local tangent spaces. Improved LTSA (ILTSA) provides a remedy that can efficiently recover the geometric structure of data manifolds even when data are sparse or non-uniformly distributed.
an \((n\times p)\) matrix or data frame whose rows are observations and columns represent independent variables.
an integer-valued target dimension.
a vector of neighborhood graph construction. Following types are supported;
c("knn",k), c("enn",radius), and c("proportion",ratio).
Default is c("proportion",0.1), connecting about 1/10 of nearest data points
among all data points. See also aux.graphnbd for more details.
one of "intersect", "union" or "asymmetric" is supported. Default is "union". See also aux.graphnbd for more details.
an additional option for preprocessing the data.
Default is "center". See also aux.preprocess for more details.
heat kernel bandwidth parameter in \((0,\infty)\).
a named list containing
an \((n\times ndim)\) matrix whose rows are embedded observations.
a list containing information for out-of-sample prediction.
Zhang P, Qiao H, Zhang B (2011). “An Improved Local Tangent Space Alignment Method for Manifold Learning.” Pattern Recognition Letters, 32(2), 181--189.
# \donttest{
## load iris data
data(iris)
set.seed(100)
subid = sample(1:150,50)
X = as.matrix(iris[subid,1:4])
label = as.factor(iris[subid,5])
## try different bandwidth size
out1 <- do.iltsa(X, t=1)
out2 <- do.iltsa(X, t=10)
out3 <- do.iltsa(X, t=100)
## Visualize two comparisons
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,3))
plot(out1$Y, pch=19, col=label, main="ILTSA::t=1")
plot(out2$Y, pch=19, col=label, main="ILTSA::t=10")
plot(out3$Y, pch=19, col=label, main="ILTSA::t=100")
par(opar)
# }