Doublue Adjacency Graphs-based Discriminant Neighborhood Embedding (DAG-DNE) is a variant of DNE. As its name suggests, it introduces two adjacency graphs for homogeneous and heterogeneous samples accordaing to their labels.

do.dagdne(
X,
label,
ndim = 2,
numk = max(ceiling(nrow(X)/10), 2),
preprocess = c("center", "scale", "cscale", "decorrelate", "whiten")
)

## Arguments

X

an $$(n\times p)$$ matrix or data frame whose rows are observations.

label

a length-$$n$$ vector of data class labels.

ndim

an integer-valued target dimension.

numk

the number of neighboring points for k-nn graph construction.

preprocess

an additional option for preprocessing the data. Default is "center". See also aux.preprocess for more details.

## Value

a named list containing

Y

an $$(n\times ndim)$$ matrix whose rows are embedded observations.

trfinfo

a list containing information for out-of-sample prediction.

projection

a $$(p\times ndim)$$ whose columns are basis for projection.

## References

Ding C, Zhang L (2015). “Double Adjacency Graphs-Based Discriminant Neighborhood Embedding.” Pattern Recognition, 48(5), 1734--1742.

## See also

do.dne

Kisung You

## Examples

## load iris data
data(iris)
set.seed(100)
subid = sample(1:150,50)
X     = as.matrix(iris[subid,1:4])
label = as.factor(iris[subid,5])

## try different numbers for neighborhood size
out1 = do.dagdne(X, label, numk=5)
out2 = do.dagdne(X, label, numk=10)
out3 = do.dagdne(X, label, numk=20)

## visualize
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,3))
plot(out1$Y, main="nbd size=5", col=label, pch=19) plot(out2$Y, main="nbd size=10",col=label, pch=19)
plot(out3\$Y, main="nbd size=20",col=label, pch=19)

par(opar)